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Abstract

The presented paper has been dedicated to complete the closed form three-dimensional fundamental solutions of the
governing differential equations for an unsaturated deformable porous media with linear elastic behavior and a sym-
metric spherical domain in both Laplace transform and time domains. The governing differential equations consist
of equilibrium, air and water transfer equations including the suction effect and dissolved air in water. The obtained
Green�s functions have been derived exactly, for the first time, using the linear form of the governing differential equa-
tions and considering the effects of non-linearity of the governing equations and have been verified in both frequency
and time domains.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper is the second part of a pair of papers that attempt to derive the fundamental solutions
for the governing differential equations of the unsaturated soils with elastic linear behavior for solid
skeleton in symmetric spherical coordinates. In the first part, the closed form fundamental solutions in
the two-dimensional case were presented in both frequency and time domains using the linear form of
the governing differential equations and considering the effects of non-linearity of the governing
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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equations. In the second part the corresponding Green�s functions will be derived and verified for the
three-dimensional case.

Hereafter, having the complete two and three-dimensional time-dependent fundamental solutions for the
unsaturated soils, seems to enable us to model this phenomena with the boundary element method, that
specially for the soils media, regarding its capability of modeling infinite boundaries as well as other advan-
tages, is of great effectiveness and applicability.
2. Review of the governing equations

The governing differential equations for unsaturated porous media consist of equilibrium equations,
constitutive equations of the solid skeleton, and continuity and transfer equations for air and water. These
equations that have been derived in the previous paper, are written as follow.

2.1. Equilibrium and constitutive equations of the solid skeleton

Equilibrium equations based on the two independent parameters (r � pa) and (pa � pw), with elastic or
linear behavior, considering stress–strain and strain–deformation relations, are
ðk þ lÞuj;ij þ lui;jj þ ðDs � 1Þpa;i � Dspw;i þ bi ¼ 0 ð1Þ
in which k and l are Lamé�s coefficients of soil elasticity, Ds is the coefficient of deformations due to suction
effect and u, r, pa and pw stand for displacement of soil�s solid skeleton, stress and air and water pressures,
respectively. b denotes the body forces.

2.2. Continuity and transfer equations for air

The final air transfer equation consisting of generalized Darcy�s law for air transfer, conservation law for
air mass and air and water coefficients of permeability is
qaKa

ca
r2pa þ

HqaKw

cw
r2pw ¼ �qabûi;ið1� HÞ o

ot
ðpa � pwÞ

þ qa½1� ða þ bðp̂a � p̂wÞÞð1� HÞ� o
ot
ðui;iÞ

ð2Þ
where qa and ca are air density and unit weight, cw denotes water unit weight and finally a and b are con-
stants. Ka and Kw are air and water coefficients of permeability. Henry�s coefficient, H, denotes the amount
of dissolved air in water. Also t stands for time variable.

qa and Ka are assumed constant in space and dispensing with variations of qa in time. Also $2 stands for
the Laplacian operator and the hat sign ð̂ Þ denotes that the parameter is assumed constant during the infin-
itesimal period ot.

2.3. Continuity and transfer equations for water

With the same procedure presented for air transfer, the final transfer equation for water, considering
water velocity, water coefficient of permeability and mass conservation law, will be obtained as
qwKw

cw
r2pw ¼ qwbûi;i

o

ot
ðpa � pwÞ þ qw½a þ bðp̂a � p̂wÞ�

o

ot
ðui;iÞ ð3Þ
where qw denotes water density.
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3. Laplace transform

Applying the Laplace transform to eliminate the time variable from the governing partial differential
equations and solving the differential equations in Laplace transform domain, the following simplified
equations will be resulted:
c11~uj;ij þ c12~ui;jj þ c13~pa;i þ c14~pw;i þ c15 ¼ 0 ð4Þ

c21~ui;i þ c22~pa þ c23r2~pa þ c24~pw þ c25r2~pw þ c26 ¼ 0 ð5Þ

c31~ui;i þ c32~pa þ c33r2~pw þ c34~pw þ c35 ¼ 0; i; j ¼ 1; 3 ð6Þ

where the tilde denotes the variables in Laplace domain and the cij coefficients are as defined in paper part I.
4. Green�s functions

Simplifying the differential Eqs. (4)–(6) in the following matrix form:
½Cij� 	~u ¼ ~f ð7Þ

where Cij = cij · dij in which dij are the differential operators and
xi ¼ ~ui; i ¼ 1; 3

x4 ¼ ~pa
x5 ¼ ~pw

ð8Þ
and
fi ¼ �~bi; i ¼ 1; 3

f4 ¼ �c26
f5 ¼ �c35

ð9Þ
and implementing the Kupradze (Kupradze et al., 1979) or Hörmander�s method (Hörmander, 1963) to de-
rive the fundamental solutions G ¼ ½~gij�, one can obtain the final differential equation to solve as
ðD1r10 þ D2r8 þ D3r6Þu þ 1

s
dðxÞ ¼ 0 ð10Þ
where s is the Laplace transform parameter and $2n = ($2)n is n occurrence(s) of the Laplacian operator.
The D1, D2 and D3 parameters are defined as
D1 ¼ c212ðc11 þ c12Þc23c33
D2 ¼ c212ð�c14c23c31 þ c13ðc25c31 � c21c33Þ � ðc11 þ c12Þðc25c32 � c22c33 � c23c34ÞÞ
D3 ¼ c212ðc13ðc24c31 � c21c34Þ þ c14ðc21c32 � c22c31Þ � ðc11 þ c12Þðc24c32 � c22c34ÞÞ:

ð11Þ
Executing the same procedure as two-dimensional case, one finds the k1 and k2 parameters as
k2
1;2 ¼

�D2 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

2 � 4D1D3

q
2D1

ð12Þ
and noting that Green�s function of Helmholtz differential equation for an only r-dependent fully symmetric
three-dimensional domain is (Arfken and Weber, 2001; Ocendon et al., 1999):
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Ui ¼
e�kir

4pr
; i ¼ 1; 2 ð13Þ
one can obtain:
U ¼ D1sr6ðuÞ ¼ e�k2r � e�k1r

4prðk2
2 � k2

1Þ
ð14Þ
then by applying three times the following three-dimensional inverse Laplacian operator (Spiegel,
1999):
r�2ð#Þ ¼
Z
r

r�2

Z
r
ðr2#Þdr

� �
dr ð15Þ
the u function will be obtained as !

uðr; sÞ ¼ 1

4prD1sðk2
2 � k2

1Þ
e�k2r

k6
2

� e�k1r

k6
1

ð16Þ
the ½~gij� Green�s functions or cofactor matrix components ½C�
ij� are
~gij ¼ ½dijðF 11r8 þ F 12r6 þ F 13r4Þ þ ðF 21r6@i@j þ F 22r4@i@j þ F 23r2@i@jÞ�u
~gi4 ¼ ðF 31r6@i þ F 32r4@iÞu
~gi5 ¼ ðF 41r6@i þ F 42r4@iÞu
~g4i ¼ ðF 51r6@i þ F 52r4@iÞu
~g5i ¼ ðF 61r6@i þ F 62r4@iÞu
~g44 ¼ ðF 71r8 þ F 72r6Þu
~g45 ¼ ðF 73r8 þ F 74r6Þu
~g54 ¼ ðF 75r6Þu
~g55 ¼ ðF 76r8 þ F 77r6Þu; i; j ¼ 1; 3

ð17Þ
where dij is the Kronecker delta operator. The Fij coefficients are presented in Appendix A.
4.1. Green�s functions in Laplace transform domain

Substituting the u function from Eqs. (16) and (17) and defining the Ci intermediate functions:
C1 ¼ K11X11 þ K12X12 þ K13X13

C2 ¼ K21X31 þ K22X32 þ K23X33

C3 ¼ K21X11 þ K22X12 þ K23X13

ð18Þ
the Green�s functions in Laplace transform domain are as
~gij ¼
dij

r
C1 þ

1

r5
ð3xixj � dijr2ÞC2 þ

xixj
r3

C3

~gi4 ¼ � xi
r3
ðK31X31 þ K32X32Þ

~gi5 ¼ � xi
r3
ðK41X31 þ K42X32Þ

~g4i ¼ � xi
r3
ðK51X21 þ K52X22Þ
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~g5i ¼ � xi
r3
ðK61X21 þ K62X22Þ

~g44 ¼
1

r
ðK71X11 þ K72X12Þ

~g45 ¼
1

r
ðK73X11 þ K74X12Þ

~g54 ¼
1

r
K75X12

~g55 ¼
1

r
ðK76X11 þ K77X12Þ; i; j ¼ 1; 3:

ð19Þ
The above Green�s functions are also presented in extended form in Appendix D. From the relationships
in Appendix D, one can see that ~g4i ¼ s~gi4 and ~g5i ¼ s~gi5 (Chen, 1994). The Kij coefficients and the Xij inter-
mediate functions are shown in Appendices B and C, respectively.
4.2. Green’s functions in the time domain

Applying the inverse Laplace transform to the Laplace transform domain Green�s functions, requires
finding the inverse Laplace transforms of the following terms:
e�rk2

k2
2ðk

2
2 � k2

1Þ
;

e�rk2

k2ðk2
2 � k2

1Þ
;

e�rk2k2

ðk2
2 � k2

1Þ
;

e�rk2k2
2

ðk2
2 � k2

1Þ
;

se�rk2

k4
2ðk

2
2 � k2

1Þ
;

se�rk2

k3
2ðk

2
2 � k2

1Þ
;

se�rk2

k2
2ðk

2
2 � k2

1Þ
;

se�rk2

k2ðk2
2 � k2

1Þ
;

e�rk2

sðk2
2 � k2

1Þ
;

e�rk2k2

sðk2
2 � k2

1Þ
;

e�rk2k2
2

sðk2
2 � k2

1Þ
ð20Þ
where
k1 ¼
ffiffiffiffiffiffi
m1

p ffiffi
s

p

k2 ¼
ffiffiffiffiffiffi
m2

p ffiffi
s

p

k2
2 � k2

1 ¼ m3s

ð21Þ
and the mi coefficients in Eq. (21) are
m1;2 ¼
�D2

s



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

2 � 4D1D3

s2

s
2D1

m3 ¼ m2 � m1:

ð22Þ
Referring to the Laplace transform tables, we have the inverse Laplace transforms of the following terms
(Abramowitz and Stegun, 1965; Spiegel, 1965):
er
ffiffi
s

p

s
;

er
ffiffi
s

p

s2
;

er
ffiffi
s

pffiffi
s

p ;
er
ffiffi
s

p

s
ffiffi
s

p : ð23Þ
The inverse Laplace transforms of the terms in Eq. (23) are shown as Kij[a, t] in Appendix E. Now,
by applying the inverse Laplace transforms Kij[a, t], we can obtain the inverse Laplace transforms of
the Green�s functions in Eq. (19). For this purpose, the intermediate functions Wij[r, t] are defined in
Appendix F. Using the Kij coefficients and the intermediate functions Wij[r, t], we are able to derive
the Green�s functions in the time domain that are shown in Eq. (25). By defining Hi intermediate
functions as
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H1 ¼ K11W11½r; t� þ K12W12½r; t� þ K13W13½r; t�
H2 ¼ K21W31½r; t� þ K22W32½r; t� þ K23W33½r; t�
H3 ¼ K21W11½r; t� þ K22W12½r; t� þ K23W13½r; t�

ð24Þ
the time-domain Green�s functions are
gij½r; xi; xj; t� ¼
dij

r
H1 þ

1

r5
ð3xixj � dijr2ÞH2 þ

xixj
r3

H3

gi4½r; xi; t� ¼ � xi
r3
ðK31W31½r; t� þ K32W32½r; t�Þ

gi5½r; xi; t� ¼ � xi
r3
ðK41W31½r; t� þ K42W32½r; t�Þ

g4i½r; xi; t� ¼ � xi
r3
ðK51W21½r; t� þ K52W22½r; t�Þ

g5i½r; xi; t� ¼ � xi
r3
ðK61W21½r; t� þ K62W22½r; t�Þ

g44½r; t� ¼
1

r
ðK71W11½r; t� þ K72W12½r; t�Þ

g45½r; t� ¼
1

r
ðK73W11½r; t� þ K74W12½r; t�Þ

g54½r; t� ¼
1

r
K75W12½r; t�

g55½r; t� ¼
1

r
ðK76W11½r; t� þ K77W12½r; t�Þ; i; j ¼ 1; 3:

ð25Þ
5. Verification

Since the solutions are being introduced for the first time and due to the lack of enough references, ver-
ification and comparison with other corresponding data is not possible. Again same as in the case of the
two-dimensional solution, for the solutions (mathematical model) to be verified mathematically, we can
show for example if the conditions approach to the poroelastostatic case, the corresponding Green�s func-
tions will approach to the poroelastostatic Green�s functions {neglecting dissolved air in water and the suc-
tion effect (i.e. H = Ds = 0)}. Considering the Eqs. (4)–(6), the coefficients of terms with time variations orbSr and n̂ will be substituted with zero. This equals to substituting the terms n (or bSr) and g (or ð1� bSrÞ) and
also ûi;i in Kij statements with zero. Therefore the only non-vanishing coefficients are
K11 ¼
1

4pl

K21 ¼ � k þ l
4plðk þ 2lÞ

K31 ¼ � ca
4pðk þ 2lÞKaqa

K71 ¼ � ca
4pKaqa

K76 ¼ � cw
4pKwqw

:

ð26Þ
Among the Xij terms in the Laplace transform Green�s functions in Appendix C, the nonvanishing ones
are
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X11 ¼
1

sðk2
2 � k2

1Þ
ðe�rk2k2

2 � e�rk1k2
1Þ

X31 ¼
1

sðk2
2 � k2

1Þ
ðe�rk2ð1þ rk2Þ � e�rk1ð1þ rk1ÞÞ:

ð27Þ
By substituting the terms n (or bSr) and also ûi;i with zero, all the mi terms and subsequently k1 and k2 will
vanish. Therefore we have to evaluate the limits of X11 and X31 while k1 and k2 approach to zero:
lim
k1;k2!0

fX11g ¼ 1

s

lim
k1;k2!0

fX31g ¼ � r2

2s
:

ð28Þ
In addition, while it seems to be normal, all of the Xij terms in the Green�s functions in Laplace transform
domain that have zero coefficients, have no limits.

After some simplifications and using the above limits, the Green�s functions in Laplace transform do-
main will be obtained as
~gij ¼
ðk þ 3lÞr2dij þ ðk þ lÞxixj

8pr3slðk þ 2lÞ
~g4i ¼ ~g5i ¼ 0

~gi4 ¼ � caxi
8prsðk þ 2lÞKaqa

~gi5 ¼ 0

~g44 ¼ � ca
4prsKaqa

~g45 ¼ ~g54 ¼ 0

~g55 ¼ � cw
4prsKwqw

; i; j ¼ 1; 3

ð29Þ
that their corresponding terms in time domain are
gij ¼
ðk þ 3lÞr2dij þ ðk þ lÞxixj

8pr3lðk þ 2lÞ
g4i ¼ g5i ¼ 0

gi4 ¼ � caxi
8prðk þ 2lÞKaqa

gi5 ¼ 0

g44 ¼ � ca
4prKaqa

g45 ¼ g45 ¼ 0

g55 ¼ � cw
4prKwqw

; i; j ¼ 1; 3

ð30Þ
that are exactly the poroelastostatic Green�s functions (Banerjee, 1994; Gatmiri and Jabbari, 2004).
Furthermore, since
W ¼ f ðr0Þ; i; j ¼ 1; 3 ð31Þ
ij
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it may be concluded that the forms of the Green�s functions from mathematical point of view and in terms
of r are
gij ¼ f ðr�3; r�1Þ; i; j ¼ 1; 3

gi4; gi5; g4i; g5i ¼ f ðr�2Þ
g44; g45; g54; g55 ¼ f ðr�1Þ

ð32Þ
and all of these terms have definite limits (that approach to zero) when r ! 1, and their singularity is only
at r = 0.
6. Conclusion

In this research the closed form three-dimensional quasistatic Green�s functions of the governing differ-
ential equations of unsaturated soils, including equilibrium equations with linear elastic constitutive equa-
tions and two equations of air and water transfer have been derived in both frequency and time domains,
for the first time. The Green�s functions are verified demonstrating that if the conditions approach to poro-
elastostatic case, the Green�s functions will approach to poroelastostatic Green�s functions exactly.
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Appendix A

Fij coefficients:
F 11 ¼ c12ðc11 þ c12Þc23c33
F 12 ¼ c12ð�c14c23c31 þ c13ðc25c31 � c21c33Þ � ðc11 þ c12Þðc25c32 � c22c33 � c23c34ÞÞ
F 13 ¼ c12ðc14ðc21c32 � c22c31Þ þ c13ðc24c31 � c21c34Þ � ðc11 þ c12Þðc24c32 � c22c34ÞÞ
F 21 ¼ �c11c12c23c33

F 22 ¼ c12ðc14c23c31 þ c13ðc21c33 � c25c31Þ þ c11ðc25c32 � c22c33 � c23c34ÞÞ
F 23 ¼ c12ðc14ðc22c31 � c21c32Þ þ c13ðc21c34 � c24c31Þ þ c11ðc24c32 � c22c34ÞÞ
F 31 ¼ �c212c13c33; F 32 ¼ c212ðc14c32 � c13c34Þ
F 41 ¼ c212ðc13c25 � c14c23Þ; F 42 ¼ c212ðc13c24 � c14c22Þ
F 51 ¼ c212ðc25c31 � c21c33Þ; F 52 ¼ c212ðc24c31 � c21c34Þ
F 61 ¼ �c212c23c31; F 62 ¼ c212ðc21c32 � c22c31Þ
F 71 ¼ c212ðc11 þ c12Þc33; F 72 ¼ c212ð�c14c31 þ ðc11 þ c12Þc34Þ
F 73 ¼ �c212ðc11 þ c12Þc25; F 74 ¼ �c212ð�c14c21 þ ðc11 þ c12Þc24Þ
F 75 ¼ �c212ð�c13c31 þ ðc11 þ c12Þc32Þ; F 76 ¼ c212ðc11 þ c12Þc23
F 77 ¼ c212ð�c13c21 þ ðc11 þ c12Þc22Þ
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Appendix B

Kij coefficients:
n ¼ a þ bðp̂a � p̂wÞ; g ¼ 1� nð1� HÞ

K11 ¼
F 11

4pD1

¼ 1

4pl

K12 ¼
F 12

4pD1s
¼ bðk þ 2lÞðKacw þ KwcaÞûi;i þ Kwcað1� nÞð�1þ DsÞ � KacwnDs

4plðk þ 2lÞKaKw

K13 ¼
F 13

4pD1s2
¼ � bcacwûi;i

4plðk þ 2lÞKaKw

K21 ¼
F 21

4pD1

¼ � k þ l
4plðk þ 2lÞ

K22 ¼
F 22

4pD1s
¼ � bðk þ lÞðKacw þ KwcaÞûi;i þ Kwcað1� nÞð�1þ DsÞ � KacwnDs

4plðk þ 2lÞKaKw

K23 ¼
F 23

4pD1s2
¼ �K13

K31 ¼
F 31

4pD1

¼ cað�1þ DsÞ
4pðk þ 2lÞKaqa

; K32 ¼
F 32

4pD1s
¼ � bcacwûi;i

4pðk þ 2lÞKaKwqa

K41 ¼
F 41

4pD1

¼ �Hð�1þ DsÞKwca þ DsKacw
4pðk þ 2lÞKaKwqw

; K42 ¼
F 42

4pD1s
¼ ð�1þ HÞbcacwûi;i

4pðk þ 2lÞKaKwqw

K51 ¼
F 51

4pD1s
¼ ð1� nÞca

4pðk þ 2lÞKa

; K52 ¼
F 52

4pD1s2
¼ lK23

K61 ¼
F 61

4pD1s
¼ cwn

4pðk þ 2lÞKw

; K62 ¼
F 62

4pD1s2
¼ K52

K71 ¼
F 71

4pD1

¼ � ca
4pKaqa

; K72 ¼
F 72

4pD1s
¼ cacwðnDs � bðk þ 2lÞûi;iÞ

4pðk þ 2lÞKaKwqa

K73 ¼
F 73

4pD1

¼ Hca
4pKaqw

K74 ¼
F 74

4pD1s
¼ � cacwðgDs þ ð1� HÞbûi;iðk þ 2lÞÞ

4pðk þ 2lÞKaKwqw

K75 ¼
F 75

4pD1s
¼ � cacwðnð1� DsÞ þ bûi;iðk þ 2lÞÞ

4pðk þ 2lÞKaKwqa

; K76 ¼
F 76

4pD1

¼ � cw
4pKwqw

K77 ¼
F 77

4pD1s
¼ cacwðgð1� DsÞ � ð1� HÞbûi;iðk þ 2lÞÞ

4pðk þ 2lÞKaKwqw
Appendix C

The intermediate functions Xij:
X11 ¼
e�rk2k2

2 � e�rk1k2
1

sðk2
2 � k2

1Þ
; X12 ¼

e�rk2 � e�rk1

ðk2
2 � k2

1Þ

X13 ¼
s

ðk2
2 � k2

1Þ
e�rk2

k2
2

� e�rk1

k2
1

 !
; X21 ¼

1

ðk2
2 � k2

1Þ
ðe�rk2ð1þ rk2Þ � e�rk1ð1þ rk1ÞÞ
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X22 ¼
s

ðk2
2 � k2

1Þ
e�rk2

k2
2

ð1þ rk2Þ �
e�rk1

k2
1

ð1þ rk1Þ
 !

; X31 ¼
1

sðk2
2 � k2

1Þ
ðe�rk2ð1þ rk2Þ � e�rk1ð1þ rk1ÞÞ

X32 ¼
1

ðk2
2 � k2

1Þ
e�rk2

k2
2

ð1þ rk2Þ �
e�rk1

k2
1

ð1þ rk1Þ
 !

; X33 ¼
s

ðk2
2 � k2

1Þ
e�rk2

k4
2

ð1þ rk2Þ �
e�rk1

k4
1

ð1þ rk1Þ
 !
Appendix D

The Green�s functions in Laplace transform domain:
~gij ¼ dij K11

ðe�rk2k2
2� e�rk1k2

1Þ
rsðk2

2�k2
1Þ

þK12

ðe�rk2 � e�rk1Þ
rðk2

2�k2
1Þ

þK13

s

rðk2
2�k2

1Þ
e�rk2

k2
2

� e�rk1

k2
1

 !( )
þK21

	 1

r5sðk2
2�k2

1Þ
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Appendix E

The inverse Laplace transforms and intermediate functions Kij[a, t]:
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Appendix F

The intermediate functions Wij[r, t]:
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