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Abstract

The presented paper has been dedicated to complete the closed form three-dimensional fundamental solutions of the
governing differential equations for an unsaturated deformable porous media with linear elastic behavior and a sym-
metric spherical domain in both Laplace transform and time domains. The governing differential equations consist
of equilibrium, air and water transfer equations including the suction effect and dissolved air in water. The obtained
Green’s functions have been derived exactly, for the first time, using the linear form of the governing differential equa-
tions and considering the effects of non-linearity of the governing equations and have been verified in both frequency
and time domains.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper is the second part of a pair of papers that attempt to derive the fundamental solutions
for the governing differential equations of the unsaturated soils with elastic linear behavior for solid
skeleton in symmetric spherical coordinates. In the first part, the closed form fundamental solutions in
the two-dimensional case were presented in both frequency and time domains using the linear form of
the governing differential equations and considering the effects of non-linearity of the governing
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equations. In the second part the corresponding Green’s functions will be derived and verified for the
three-dimensional case.

Hereafter, having the complete two and three-dimensional time-dependent fundamental solutions for the
unsaturated soils, seems to enable us to model this phenomena with the boundary element method, that
specially for the soils media, regarding its capability of modeling infinite boundaries as well as other advan-
tages, is of great effectiveness and applicability.

2. Review of the governing equations

The governing differential equations for unsaturated porous media consist of equilibrium equations,
constitutive equations of the solid skeleton, and continuity and transfer equations for air and water. These
equations that have been derived in the previous paper, are written as follow.

2.1. Equilibrium and constitutive equations of the solid skeleton

Equilibrium equations based on the two independent parameters (¢ — p,) and (p, — pw), With elastic or
linear behavior, considering stress—strain and strain—deformation relations, are

(4 + Wy + iy + (Ds = 1)py; = Dipy  + bi = 0 (1)

in which A and u are Lamé’s coefficients of soil elasticity, Dy is the coefficient of deformations due to suction
effect and u, o, p, and p,, stand for displacement of soil’s solid skeleton, stress and air and water pressures,
respectively. b denotes the body forces.

2.2. Continuity and transfer equations for air

The final air transfer equation consisting of generalized Darcy’s law for air transfer, conservation law for
air mass and air and water coefficients of permeability is

Ka Hp, Ky, R 0
p—vzpa + p_vZPW = _paﬁul}l(l - H)a_(.pd _pw)
Ya Tw t (2)
. . 0
+pall = (e + By = py))(1 = H)l 5 (i)

where p, and y, are air density and unit weight, y,, denotes water unit weight and finally & and f are con-
stants. K, and K, are air and water coefficients of permeability. Henry’s coefficient, H, denotes the amount
of dissolved air in water. Also ¢ stands for time variable.

pa and K, are assumed constant in space and dispensing with variations of p, in time. Also V* stands for
the Laplacian operator and the hat sign () denotes that the parameter is assumed constant during the infin-
itesimal period 0t.

2.3. Continuity and transfer equations for water

With the same procedure presented for air transfer, the final transfer equation for water, considering
water velocity, water coefficient of permeability and mass conservation law, will be obtained as

WKW ~ a ~ ~ a
PR T, = puBi (P = ) + pulo+ BB, — 1)) 2 (1) ()

where p,, denotes water density.
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3. Laplace transform
Applying the Laplace transform to eliminate the time variable from the governing partial differential

equations and solving the differential equations in Laplace transform domain, the following simplified
equations will be resulted:

Criltj; + crottyj; + Cl3i7a,i + Cl4l~7w,,- +c¢5=0 4)
Cotli; + Ccp, + cz3V2ﬁa + cupy, + Czsvzﬁw +cx=0 (5)
31l + Cpy + 3 VPPy + cupy + 35 =0, i,j=1,3 (6)

where the tilde denotes the variables in Laplace domain and the ¢;; coefficients are as defined in paper part I.

4. Green’s functions

Simplifying the differential Egs. (4)—(6) in the following matrix form:

-

[Cy] xti=f (7)

where Cj;; = ¢;; X dj; in which d;; are the differential operators and

w; = U, l:1,3

w4 =P, (8)
s = Py,
and
i=—b, i=1,3
Ja = —c )
fs = —c3s

and implementing the Kupradze (Kupradze et al., 1979) or Hérmander’s method (Hérmander, 1963) to de-
rive the fundamental solutions G = [g,], one can obtain the final differential equation to solve as

1
(D, V" 4+ D,V + DV 4+ -d(x) =0 (10)
s
where s is the Laplace transform parameter and V>" = (V?)" is n occurrence(s) of the Laplacian operator.
The D;, D, and D5 parameters are defined as
Dy = k(e + cin)eness
D, = C%z(—014C23C31 + C13(025031 - 0216’33) - (011 + 012)(0256’32 — C2C33 — 023034)) (11)
D3 = 0%2(013(024031 - 6‘21034) + 014(021032 - 022031) - (011 + 012)(024032 - 022034))~
Executing the same procedure as two-dimensional case, one finds the A; and 4, parameters as
,  —Dyx/D;—4D\D;
A, = 12
1,2 2D1 ( )

and noting that Green’s function of Helmholtz differential equation for an only r-dependent fully symmetric
three-dimensional domain is (Arfken and Weber, 2001; Ocendon et al., 1999):
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e—il-r
i = 5 = 1, 2 13
4nr ! (13)
one can obtain:
ef/'nr _ efﬂ.]r
& =D;sV° i 14
1 ( ) 47'[7'( i?) ( )

then by applying three times the following three-dimensional inverse Laplacian operator (Spiegel,
1999):

V) = / <r2 / (r0) dr> dr (15)

the ¢ function will be obtained as

1 e /2" efi]r
5) = - 16
o) = DR = ) < L ) (16)

the [g;;] Green’s functions or cofactor matrix components [C}] are
g, = [65(FuV + FuVe + Fi3V*) + (Fu V°0,0; + FV*0,0; + FV?0:0,)]@
gy = (F3V°0; + F»V*0,) e
Zis = (Fu Vo0 + FuV*o) e
2y = (F51V°0; + F,V*0,) 0
25 = (Fa V0, + FoV'0,) e (17)
= (FnV* + FnVe

8us = (FnV' + FuV)e
(

Zss = (FsV  + F;V, i,j=1,3

where ¢;; is the Kronecker delta operator. The F; coefficients are presented in Appendix A.

4.1. Green’s functions in Laplace transform domain

Substituting the ¢ function from Egs. (16) and (17) and defining the I'; intermediate functions:

I' =KuQn +KipQi + Ki3Q13
Iy = Ky Q31 + KnQs + K333 (18)
I's = K51 Qi1 + K»Qip + Kx3Qy3

the Green’s functions in Laplace transform domain are as

- 0ij 1 XiX;
gij jF1+ (3xx, 5,]72)F2+ jF;

8u = *r—3(K31931 + K30Q3)
- Xi
85 = —r—3(K41931 + K4 Q3)

~ Xi
84 = _r_3(K51921 + K5:Q2)
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~ Xi
8i="3 (K61€51 + K62255)

5 1
8u =—(KnQu + K»nQp»)

,
5 1

845 = ;(K73911 + K74Q1) (19)
5 1

854 = ;K75912

. 1 .

8ss = ;(K%Q“ +K7Qp), i,j=1,3.

The above Green’s functions are also presented in extended form in Appendix D. From the relationships
in Appendix D, one can see that g,; = sg,, and g5; = sg;5 (Chen, 1994). The Kj; coefficients and the Q;; inter-
mediate functions are shown in Appendices B and C, respectively.

4.2. Green's functions in the time domain

Applying the inverse Laplace transform to the Laplace transform domain Green’s functions, requires
finding the inverse Laplace transforms of the following terms:

e—r/lz e—i’).z e—r‘lz }'2 e—r‘).z i; Se—r/lz Se—r/lg Se—r}.z
B =a) hla=a) (h=A) (L-a) Ah-a) AUh-4) ABU-a)
—riy —riy —riy ) —riy )\’2
S~ez N ez 2N e~2 ~22 J ez 22 (20)
(X =127)  s(Ah=47)  s(Ah—7y)  s(Ah—4)
where
J = /miv/s
/12 = Vﬂ’lz\/g (21)
22— =mss
and the my; coefficients in Eq. (21) are
D, N D; — éiDng
my, = 5 5 (22)

2D,

ms — mp — mj.

Referring to the Laplace transform tables, we have the inverse Laplace transforms of the following terms
(Abramowitz and Stegun, 1965; Spiegel, 1965):

ervs ervs ervs ervs
s 7827 s sys
The inverse Laplace transforms of the terms in Eq. (23) are shown as A4,[a,!] in Appendix E. Now,
by applying the inverse Laplace transforms A,[a,f], we can obtain the inverse Laplace transforms of
the Green’s functions in Eq. (19). For this purpose, the intermediate functions ¥,{r,?] are defined in
Appendix F. Using the K;; coeflicients and the intermediate functions ¥,{r,f], we are able to derive

the Green’s functions in the time domain that are shown in Eq. (25). By defining ©; intermediate
functions as

(23)
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O, =KVt + KnWPulr ]+ Kiz Vi,
0, = Ko\ Wai[r 1] + K Wlr f] + K3 Va3, 1] (24)
O3 = Ko\ Pi[r,t] + KnWPiolr, f] + Ky Pisr, 1]

the time-domain Green’s functions are

gijlrsxi x;, 1] = % @1 —|— ! s (3xx; — 5,770, _'_x;);,- OB

gulr,xi, 1] = —r—3(K31q/31[F7 1] + K3 Pslr, 1)

gslrxi ) = =5 (K Walr, 1 + Ko ¥l )

gulrxnt] = — ; (K51 Wi r, 1] + K52 Waalr, ])

gsilr,xi 1] = —%(Kél'f’zl [r, 1] + Key¥alr, 1]) (25)
gulr, 1] = %(KH‘PM[F» 1]+ Kn¥olr1)

Quslrit] = %(an’n[’“ ]+ KuWPalr, 1)

gsalr,f] = %K%‘Plz[ﬂ 1]

gsslr t] = %(Km?’“[r, (| +Kn¥nlrd), i,j=13.

5. Verification

Since the solutions are being introduced for the first time and due to the lack of enough references, ver-
ification and comparison with other corresponding data is not possible. Again same as in the case of the
two-dimensional solution, for the solutions (mathematical model) to be verified mathematically, we can
show for example if the conditions approach to the poroelastostatic case, the corresponding Green’s func-
tions will approach to the poroelastostatic Green’s functions {neglecting dissolved air in water and the suc-
tion effect (i.e. H = Ds = 0)}. Considering the Egs. (4)(6), the coefficients of terms with time variations or
S and 7 will be substituted with zero. This equals to substituting the terms ¢ (or s »)and 5 (or (1 — §,)) and
also i#;; in Kj; statements with zero. Therefore the only non-vanishing coefficients are

1
Ky = dnn
A+
K0 = g o0
K5 =~ gt 30k, @
Kn = _4711/(':,0a
Kas _47r1?:va'

Among the Q;; terms in the Laplace transform Green’s functions in Appendix C, the nonvanishing ones
are
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B 1
s(A3— A7)
_ 1
s(Z3 = 4)
By substituting the terms & (or g,.) and also #;; with zero, all the m; terms and subsequently 4, and /1, will
vanish. Therefore we have to evaluate the limits of Q;; and Q3; while 4, and A, approach to zero:

Qn (e7"i5 —e 7M7)
(27)

(eiriz(l + 7"/12) — ef’%‘(l + I")\.l)).

Q31

. 1

. lim {Q“} = -

A1,22—0 S
, 2 (28)
i Q= ——.

m (s} = =5

In addition, while it seems to be normal, all of the Q;; terms in the Green’s functions in Laplace transform
domain that have zero coefficients, have no limits.

After some simplifications and using the above limits, the Green’s functions in Laplace transform do-
main will be obtained as

o (43070 + (A+ pix;

8= 8rrisu(l + 2u)

84 =85 =0

~ YaXi

& = 8nrs(A + 2u)K.p,

8s=0 (29)

= o

“ 4nrsK,p,

845 =285 =0

~ Vw A
=—-—— =1,3

8ss 47T”SKwPW ) L] )

that their corresponding terms in time domain are

_ (A3, + (A + pwxix;

&= 8mr3u(l + 2u)

84 =85 =0
_ YaXi

Bu = 8nr(L + 2u)K.p,

8s=0 (30)
_ T

Bu = 4nrK,p,

845 =845 =10

yw P T A

=—-—7 =1,3

8ss 47TVKwa ’ L] )

that are exactly the poroelastostatic Green’s functions (Banerjee, 1994; Gatmiri and Jabbari, 2004).
Furthermore, since
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it may be concluded that the forms of the Green’s functions from mathematical point of view and in terms
of r are

gij:.f(r73vr71)a 17]213_3
Qi 8is 8 &si = S (r7?) (32)
844584558545 855 :f(f])

and all of these terms have definite limits (that approach to zero) when r — oo, and their singularity is only
at r=0.

6. Conclusion

In this research the closed form three-dimensional quasistatic Green’s functions of the governing differ-
ential equations of unsaturated soils, including equilibrium equations with linear elastic constitutive equa-
tions and two equations of air and water transfer have been derived in both frequency and time domains,
for the first time. The Green’s functions are verified demonstrating that if the conditions approach to poro-
elastostatic case, the Green’s functions will approach to poroelastostatic Green’s functions exactly.
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Appendix A

F; coeflicients:
Fii = cialen + cin)eness
Fi,= Clz(*014023031 + 013(025631 - 021033) - (011 + 012)(025032 — CC33 — 023034))
Fi3= 612(014(021632 - 022031) + 013(024631 - 021634) - (611 + 012)(6246‘32 - 022634))
Fy = —cuencaes
Foy = cia(cracasest + cis(caress — casesr) + cii(easesn — 22633 — €23¢34))

Fay = 012(014(022031 - 021032) + 013(021034 - C24031) + C11(024032 - 022034))

Fy = —c}yeises, Fy = c}y(cuucn — ci3ca)

Fa1 = cy(c13cas — c1a023), Fy = c}y(c13¢4 — clacn)

Fs = C%z(CZSCSI — 21033), Fsy = 0%2(024031 — 21C34)

Fe = —c}henesn, Fe = c},(caicnn — cxncan)

Fn = cy(en + en)ess, Fp = ch(—cucs + (e + ci2)csa)
F73 = —cy(cn + c1a)eas, Fi = —cy(—cuen + (e + cin)ea)
Fis = —cly(—cies + (enn 4+ cn)esn), Fre = cfy(cnn + cin)en

F77 = c}(—ci3ea + (e11 + cia)en)
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Appendix B

K;; coefficients:

5999

E=oa+pp,—py), n=1-E41—-H)
K = Fu _ L
" 4mD, 4ru

K12 _ F12 _ ﬂ() + 2”)(Kayw +Kwya)f4i4i "l‘KwVa(l - 6)(_1 +Ds) - KanﬁDs
4nD,s drp(A + 20K, Ky

Kis = s Aﬁya'ywili,i
41D s? drpu(d + 20K K,

Ky — Fy _ A+
4nD, Anp (L +2p)

Ky = Fpn _ ﬁ() + H)(K‘d'yw + KW’ya)ai«,f + KWya(l B 6)(_1 +Db) B K‘dywéDS
4nDs drp(A + 20K, K,

F
K31 F31 Va(_l +Ds) K32 F32 ﬁyaywﬁi,i

T 4nD, 4n(A+ 2u)Kap,’

ko~ Fa _ H(=14D)Kyy, + DKy,
T 4D, 4n(0+ 20K Kyp, )
Ko =t (=0
51 = = ’
4xDys ~ a7 2K,
ko= Fo e
61 = = 7
4nDs  4n() +2p)Ky
Fn Ya
K = - _
" 4D, 4nK,p,’
F Hy.
K73 - & = /d
4nDy  4nK,p,
Koy = £ _ 7aVw(1Ds + (1 — H) Bt (4 + 2p))
7 4nDys 4700+ 21)K oK py,
_ Fis _ _Van(é(l — Dy) + Pt (A + 2u))
7 AnDis 4n(2 4 2u)K.Kyp, )
Ko — Fr Vavw (1 — Ds) — (1 — H) Bty (4 + 2u))
77 4nD,s 4100+ 20 KoK pyy
Appendix C

The intermediate functions Q;;:

efr).z )»,2 _ efr).] /12 efr).z efr).l
Qu=—"F3——1, @, 3
s(2; = 47) (4 —4)
s e g 1
Q= - Q=
: %—m(@ ﬁ) G

- 4nDys - 4n(A 4 2u)K.Kyp,

K — F42 _ (_1 + H)ﬁya’ywill}i
2 4nDys  4n(A+ 2K, Kypy,
K & = uK
52 47D, 82 HA 23
Fe
K = — =
2= 4D.s 52
Ko — Fpn VaVw(EDs — B(A+2p)i;;)
" 4nDs 4n(L 4+ 2K, Kyp,
Fs Vw
76

- 4nD, - 4nKp,,
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—rA

7 (1—’-1"/11)), Q3] -

1

1

———— (e (1 + 72
s

s e~
Qp=—"—5|—5(1+7k)—
(75=747) <

—rly

——( +r/11)>, Q33 :(}57/12) (e”z (1+7rky) —

-1

Q ! e7'"(1+x)
r
32 = ( /,{2 /,{2 ) A 2

Appendix D

The Green’s functions in Laplace transform domain:

—7.

"1

— e’”" (1 +}”il))

2

v (1 +Fil)>

_ (e—rﬂ.z ;é _ e—r/ll /l%) (e—rﬂ.z e—r).] ) s e—r/".z e—r).l
o f{l‘ e R E VR D A VS !

«— |
rs(l5—43)

1 2 eidz 1 eir}VI 2 (a1l 7M1
) (3x;x; — 0,77) T(I—I—rﬂz)—?(l—i—ril) +xaxr (e — )

X;
5072 92
”(’12 ’11 2 1

s 3 5 5 e*i’iz : ; e*"zl : y 5 efr).z efr}q
X————- | (3xx;—0;7") | —— (L +7r42) — +rs Fxxr | ————
Sl W ) A W

- K31x; 1 —rly 2 Ki3ox; 1 e

4=""_3 (1471 (1 +rk)) — 1470,) —-
8ia 73 ()é_/ﬁ)( ( 2) ( 1)) 3 (ig_;b%) ;é ( 2) 2
- Kyx; 1 iy - 42xz e "2
ng:_sT(}é—ﬁ)(e 2(147l) —e ™ (14+74)) — S (I4+7rk)—
_ Ksixi 1 ) ) Kszxz e
Bu= T G @ ) e () < |-

2 2
- Kex; 1 i _ K62x1 e
gﬁ:iT()f_;f)(e )2(1+7’/12)7e /11(1+I’/11)) 3 1+I”)L2
2 M 2

~ (e—r).g ig —e M )ﬁ) (e—r,lz _ e—ril)
8u=Kn K7

“ rs(75—71) (3= 7)
~ (e—r).g /15 _ e—rxl )ﬁ) (e—r,lz _ e—ril)
s =Kn Jon

» rs(75—71) r(i3—7)

(e*r‘).z _ e*rll )

5. g lermome™)
TS
_ efr').z iz _ e*r/ll 12 67’%2 _ e*r/ll
I e I )

rs(2 =) r(l=4)

)

e*ril

(5]
(1 +V;Ll)
2

(3xax; — 02 (€72 (1 +72) —e ™1 (1 +7y)) +xixp? (€772 75 —e ™ 7)] + K

+ K>3

—rl
(1 —I—r/ll)
1

—ri

(1 +r;L])
Z

—rd
3 (1 +F;L])
1

N—— S~ " S~
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Appendix E

The inverse Laplace transforms and intermediate functions A4,{a, t]:

2 <5
Erfc(x) = ﬁ e v du
e avs a
Anla,f) = 27! = Erfi
e
A1z[a,t] = ! +I)Erfc(2i\ﬁ) —a\/ie 43

Appendix F
The intermediate functions ¥,{r, ¢]:
Pulrd= 1{911}— (mZAll[V iy, 1] —my Ay [ry/my, 1))
Yiolrf= 1{le}_ (/111[” 2, 1) — Ay [r/my 1))
1
Y’B[r,t]:3_1{913}2;3<m—2A11[r\/m2,t]—m—1A11[r ml,t]>
1 r
qul[i",t]:gil{QZI}Zm—‘;(A“[I’ m27t]_All[r\/mht])+E(\/m2A21[r mz,t]—\/ml/lzl[r,/ml,t])
st = 2} = (LAt = A /] ) (e Ay [/ 03, ] — e s [ 07,
2= 22 _m3 - 11|77/ M2, m 1|/ mi, 3 \/m—z 217/ M2, \/m_1 21(Fy/ My,
1 r
'P31[}",t]2371{931}:,/”—3(/112[7‘ mZ,t]—Alz[V ml,t])+m—3(\/m2/122[r mZ,t]—\/ml/lzz[}" ml,t])

1 /1 1 r 1 1
'P32[}",l]23_1{932}:;”—3(’"—2/112[}’ M2,t]—m—1/112[r ml,t]>+m—3<\/—m_2/122[r mZ,l]—\/—m_l/lzz[r ml,t])

l11’33[r,t]:,f’l{Qn}:mi( 5 A [ry/my,t] — Alz[r\/_l,t}) (mh/_/lzz[r t]fﬁm_l/lzz[r ml,t])
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